Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38475439

ABSTRACT

Banana peel (BP) is the primary by-product generated during banana processing which causes numerous environmental issues. This study examines the physical attributes, proximate analysis, glycoarray profiling, antioxidant abilities, and prebiotic activity of BP. The analysis demonstrated that carbohydrates constituted the primary components of BP and the glycoarray profiling indicated that BP contains multiple pectin and hemicellulose structures. BP also contained phenolic compounds, including (+)-catechin and gallic acid, flavonoid compounds, and antioxidant activities. BP demonstrated prebiotic effects by promoting the proliferation of advantageous gut bacteria while inhibiting the growth of harmful bacteria. The prebiotic index scores demonstrated that BP exhibited a greater capacity to promote the growth of beneficial bacteria in comparison to regular sugar. The study demonstrated the potential of the BP as a valuable source of dietary fibre, bioactive compounds, and prebiotics. These components have beneficial characteristics and can be utilised in the production of food, feed additives, and functional food.

2.
BMC Vet Res ; 20(1): 111, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38515094

ABSTRACT

BACKGROUND: At present, porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most severe epidemics impacting pig farming globally. Despite the fact that a number of studies have been conducted on potential solutions to this problem, none have proven effective. The focus of problem solving is the use of natural ingredients such as plant extracts. Popular throughout Asia, Caesalpinia sappan (CS) is a therapeutic plant that inhibits PRRSV in vitro. Therefore, this study was performed to determine the efficacy of CS extract dietary supplementation on the productive performance, antibody levels, immunological indicators, and lung pathology of PRRSV-challenged weaned pigs. A total of 32 weaned piglets (28 days old) were randomized into 4 groups and kept separately for 14 days. The treatments were organized in a 2 × 2 factorial design involving two factors: PRRSV challenge and supplementation with 1 mg/kg CS extract. The pigs in the PRRSV-challenged groups were intranasally inoculated with 2 mL of PRRSV (VR2332) containing 104 TCID50/mL, while those in the groups not challenged with PRRSV were inoculated with 2 mL of normal saline. RESULTS: In the PRRSV-challenged group (CS + PRRSV), supplementation with CS extract led to an increase in white blood cells (WBCs) on Day 7 post infection (p < 0.05) and particularly in lymphocytes on Days 7 and 14. The antibody titer was significantly greater in the CS + PRRSV group than in the PRRSV-challenged group not administered CS (PRRSV group) on Day 14 postinfection (S/P = 1.19 vs. 0.78). In addition, CS extract administration decreased the prevalence of pulmonary lesions, which were more prevalent in the PRRSV-challenged pigs that did not receive the CS extract. CONCLUSION: The findings of this study suggest that supplementation with CS extract is beneficial for increasing WBC counts, especially lymphocytes, increasing the levels of antibodies and reducing the prevalence of lung lesions in PRRSV-infected pigs.


Subject(s)
Caesalpinia , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Viral Vaccines , Animals , Antibodies, Viral , Dietary Supplements , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/prevention & control , Swine , Swine Diseases/drug therapy , Swine Diseases/prevention & control
3.
Foods ; 12(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38002174

ABSTRACT

Coffee has been a common ingredient in many traditional hair loss remedies, but limited scientific evidence supports its use, particularly in coffee pulp. Androgenetic alopecia (AGA) is caused by androgens, inflammation, and oxidative stress. In the present study, supercritical fluid extraction (SFE) was used under various conditions to obtain six coffee pulp extracts. The SFE-4 extract, using 50% (v/v) ethanol as a co-solvent at conditions of 100 °C and 500 bars for 30 min, exhibited the highest phenolic, flavonoid, and caffeine contents. Additionally, the SFE-4 extract increased the migration and cell proliferation of HFDPCs (human hair follicle dermal papilla cells), which control hair cycle regulation, and had scavenging effects on ABTS and DPPH radicals. Additionally, the SFE-4 extract showed potassium ion channel opener activity in HFDPCs, as well as a stimulation effect on the enzyme matrix metalloproteinase-2 (MMP-2) (28.53 ± 1.08% of control), which may be related to the vascular endothelial growth factor (VEGF) gene upregulation. In human prostate cancer cells (DU-145) and HFDPC cells, the SFE-4 extract significantly decreased the expression of SRD5A1, SRD5A2, and SRD5A3, an essential pathway involved in AGA. Hair growth factor genes in the Wnt/-catenin (CTNNB1) and Sonic Hedgehog (SHH, SMO, and GLI1) pathways could be significantly activated by the SFE-4 extract. These results imply that employing SFE in coffee pulp extraction could help AGA treatment by preventing hair loss and promoting hair growth pathways. This would help small coffee producers gain economic empowerment and ensure the long-term sustainability of agricultural waste utilization.

4.
Plants (Basel) ; 12(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836168

ABSTRACT

Roses are popular ornamental plants all over the world. Rosa damascena Mill., also known as the damask rose, is a well-known scented rose species cultivated to produce essential oil. The essential oils obtained are high in volatile organic compounds (VOCs), which are in demand across the pharmaceutical, food, perfume, and cosmetic industries. Citronellol, nonadecane, heneicosane, caryophyllene, geraniol, nerol, linalool, and phenyl ethyl acetate are the most important components of the rose essential oil. Abiotic factors, including as environmental stress and stress generated by agricultural practises, frequently exert a selective impact on particular floral characteristics, hence influencing the overall quality and quantity of rose products. Additionally, it has been observed that the existence of stress exerts a notable impact on the chemical composition and abundance of aromatic compounds present in roses. Therefore, understanding the factors that affect the biosynthesis of VOCs, especially those representing the aroma and scent of rose, as a response to abiotic stress is important. This review provides comprehensive information on plant taxonomy, an overview of the volatolomics involving aromatic profiles, and describes the influence of abiotic stresses on the biosynthesis of the VOCs in damask rose.

5.
J Vis Exp ; (199)2023 09 29.
Article in English | MEDLINE | ID: mdl-37843288

ABSTRACT

Microarray polymer profiling (MAPP) is a robust and reproducible approach to systematically determine the composition and relative abundance of glycans and glycoconjugates within a variety of biological samples, including plant and algal tissues, food materials, and human, animal, and microbial samples. Microarray technology underpins the efficacy of this method by providing a miniaturized, high-throughput screening platform, allowing thousands of interactions between glycans and highly specific glycan-directed molecular probes to be characterized concomitantly, using only small amounts of analytes. Constituent glycans are chemically and enzymatically fractionated, before being sequentially extracted from the sample and directly immobilized onto nitrocellulose membranes. The glycan composition is determined by the attachment of specific glycan-recognizing molecular probes to the extorted and printed molecules. MAPP is complementary to conventional glycan analysis techniques, such as monosaccharide and linkage analysis and mass spectrometry. However, glycan-recognizing molecular probes provide insight into the structural configurations of glycans, which can aid in elucidating biological interactions and functional roles.


Subject(s)
Glycoconjugates , Polysaccharides , Animals , Humans , Microarray Analysis/methods , Polysaccharides/chemistry , Mass Spectrometry , Molecular Probes , Plants/chemistry
6.
Prep Biochem Biotechnol ; : 1-10, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37747818

ABSTRACT

Coffee pulp (CP), a by-product of coffee production, is an underutilized resource with significant potential value. CP contains monosaccharides that can serve as an ideal carbon source for bacterial cultivation, enabling the production of value-added components such as medical-grade cellulose. Herein, we extracted the sugar fraction from Arabica CP and used it as a supplement in a growing media of a bacteria cellulose (BC), Komagataeibacter nataicola. The BC was then characterized and tested for cytotoxicity. The CP sugar fraction yielded approximately 7% (w/w) and contained glucose at 4.52 mg/g extract and fructose at 7.34 mg/g extract. Supplementing the sugar fraction at different concentrations (0.1, 0.3, 0.5, 0.7, and 1 g/10 mL) in sterilized glucose yeast extract broth, the highest yield of cellulose (0.0020 g) occurred at 0.3 g/10 mL. It possessed similar physicochemical attributes to the BC using glucose, with some notable improvements in fine structure and arrangement of the functional groups. In cytotoxicity assessments on HaCaT keratinocyte cells, bacterial cellulose concentrations of 2-1000 µg/mL exhibited viability of ≥ 80%. However, higher concentrations were toxic. This research innovatively uses coffee pulp for bacterial cellulose, aligning with the principles of a bio-circular economy that focuses on sustainable biomass utilization.


The sugar fraction of Arabica CP (6.64 g/100 g sample) contained glucose and fructose of 4.52 and 7.34 mg/g extract respectively.Different sugar fraction concentrations (0.1, 0.3, 0.5, 0.7, and 1 g/10 mL) were tested in sterilized glucose yeast extract broth. Optimal BC yield (0.0020 g) was achieved at 0.3 g/10 mL.The BC exhibited comparable physicochemical characteristics to cellulose obtained from glucose.The cytotoxicity indicate that HaCaT cells exposed to 2­1000 µg/mL of BC had a percentage cell viability of ≥80%, but it was toxic at higher concentrations.CP represents a cheap and readily-available source for BC production, contributing to the bio-circular economic goal.

7.
Polymers (Basel) ; 15(18)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37765643

ABSTRACT

A novel poly (lactic acid) (PLA) composite with excellent mechanical properties, toughness, thermal stability, and water resistance was developed using a reactive melt-blending technique. PLA was melt mixed with epoxy resin (EPOXY) and bamboo pulp (PULP) to improve its reaction and mechanical properties. FTIR analysis confirmed the successful reaction of the PLA/EPOXY/PULP composites; the epoxy groups of EPOXY reacted with the -COOH groups of PLA and the -OH groups of PULP. The PLA/EPOXY/PULP5 composite showed a high tensile strength (67 MPa) and high toughness of 762 folding cycles, whereas the highest tensile strength was 77 MPa in the PLA/EPOXY5/PULP20 sample. SEM images presented a gap between the PLA and PULP; gap size decreased with the addition of EPOXY. The Tg of the PLA decreased with the EPOXY plasticizer effect, whereas the Tm did not significantly change. PULP induced crystallinity and increased Vicat softening of the PLA/PULP and PLA/EPOXY/PULP composites. The EPOXY reaction of the PLA/PULP composites improved their tensile properties, toughness, thermal stability, and water resistance.

8.
J Ethnobiol Ethnomed ; 19(1): 43, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37777741

ABSTRACT

BACKGROUND: Edible flowers (EFs) represent valuable sources of both food and medicinal resources, holding the promise to enhance human well-being. Unfortunately, their significance is often overlooked. Ethnobotanical studies on the EFs are lacking in comparison with their botanical and phytochemical research. The practice of consuming flowers as food has a rich culture and long history in China, especially among different linguistic groups in Xishuangbanna, Yunnan. However, economic activities have led to a decline of this tradition. Consequently, preserving the traditional knowledge and culture tied to the EFs in Xishuangbanna becomes both essential and pressing. METHODS: The field ethnobotanical survey was conducted in Xishuangbanna during five visits in April 2021 and May 2023, covering 48 villages and 19 local markets of all three county-level areas and 9 different linguistic groups. By conducting a comprehensive literature review and on-site field surveys, relevant information regarding the EFs of Xishuangbanna was systematically collected and documented. Additionally, the relative frequency of citation (RFC) values were calculated from the survey data. RESULTS: A total of 212 taxa (including species and varieties) of EFs from 58 families and 141 genera were documented in the study area. The edible parts of flowers were classified into 13 categories including peduncle, petal, flower buds, inflorescence as a whole, and etc. They were consumed in 21 ways and as 8 types of food. The inflorescence was the most commonly consumed category, accounting for 85 species (40.1%) of the total categories. They always eat flowers as vegetables (184 species, 86.8%). The preparing form of stir-frying was the preferred food preparation method (138, 65.1%). The Xishuangbanna locals had profound knowledge of which EFs required specific processing to remove their toxicity or bitterness. The dishes can be made from either exclusively from the flowers themselves or by incorporating them alongside other plant parts like stems and leaves. Some EFs with high RFC value, such as Musa acuminata and Bauhinia variegata var. candida, showed significant cultural meanings. These edible flowers occupy specific positions in local traditional culture. CONCLUSION: Traditional knowledge regarding edible flowers holds substantial significance and serves as a representative element of the flower-eating culture in Xishuangbanna. Nevertheless, this knowledge and cultural practice are currently decreasing. Serving as a bridge between tradition and modernity, the flower-eating culture, which derives from local people's practical experience, shows the potential of EFs and can be applied to the conservation of biocultural diversity, healthy food systems, and sustainable development.


Subject(s)
Ethnobotany , Vegetables , Humans , China , Ethnobotany/methods , Surveys and Questionnaires , Flowers , Plants, Edible
9.
Int J Biol Macromol ; 253(Pt 3): 126783, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37699462

ABSTRACT

Novel biodegradable thermoplastic starch (TPS) with high mechanical properties and water resistance was developed using reactive blending technique. Effect of zinc oxide (ZnO) addition to TPS properties and reaction was investigated. Thermoplastic modified starch (TPMS) was prepared by melt-mixing modified starch with glycerol 70/30%wt/wt. Carboxy methyl cellulose (CMC) 5%wt was incorporated with modified starch, glycerol, and zinc oxide (ZnO) 0-5 %wt. Fourier-transform infrared (FTIR) spectroscopy analysis confirmed the formation of the carboxyl anion (OZn) between the -COO- of CMC and the free Zn+ ion of ZnO. The tensile strength of the TPMS/CMC/ZnO blend increased 7 time with ZnO 5 % (14 MPa) addition compared to TPMS (2 MPa). The color (∆E) of TPMS/CMC/ZnO differed notably at high ZnO concentrations (1-5 %wt). The TPMS/CMC blend displayed a smooth fracture surface due to the miscibility of the materials. Small particles of ZnO dispersed finely in the TPMS matrix and increased the interfacial tension and water contact angle of the blends. The miscibility of TPS with CMC and the occurrence of ionic interactions of -COO- of CMC and -OH of starch with the Zn+ ion as physical crosslinking were indicated to improve the mechanical properties and water resistance of the blends.


Subject(s)
Water , Zinc Oxide , Zinc Oxide/chemistry , Carboxymethylcellulose Sodium/chemistry , Starch/chemistry , Glycerol
10.
Front Nutr ; 10: 1142784, 2023.
Article in English | MEDLINE | ID: mdl-37560057

ABSTRACT

Garlic, a common culinary spice, is cultivated and used around the globe. Consumption of garlic and its supplements reduces the risk of diabetes and cardiovascular disease and boosts the immune system with antibacterial, antifungal, anti-aging, and anti-cancer properties. Diallyl sulfide, diallyl disulfide, triallyl trisulfide, phenolics, flavonoids, and others are the most commercially recognized active ingredients in garlic and its products. In recent years, global demand for medicinal or functional garlic has surged, introducing several products such as garlic oil, aged garlic, black garlic, and inulin into the market. Garlic processing has been demonstrated to directly impact the availability of bioactive ingredients and the functionality of products. Depending on the anticipated functional qualities, it is also recommended that one or a combination of processing techniques be deemed desirable over the others. This work describes the steps involved in processing fresh garlic into products and their physicochemical alterations during processing. Their nutritional, phytochemical, and functional properties are also reviewed. Considering the high demand for functional food, this review has been compiled to provide guidance for food producers on the industrial utilization and suitability of garlic for new product development.

11.
ACS Omega ; 8(25): 22684-22697, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396248

ABSTRACT

Lablab purpureus from the Fabaceae family has been reported to have antiviral properties and used in traditional medical systems like ayurveda and Chinese medicine and has been employed to treat a variety of illnesses including cholera, food poisoning, diarrhea, and phlegmatic diseases. The bovine alphaherpesvirus-1 (BoHV-1) is notorious for causing significant harm to the veterinary and agriculture industries. The removal of the contagious BoHV-1 from host organs, particularly in those reservoir creatures, has required the use of antiviral drugs that target infected cells. This study developed LP-CuO NPs from methanolic crude extracts, and FTIR, SEM, and EDX analyses were used to confirm their formation. SEM analysis revealed that the LP-CuO NPs had a spherical shape with particle sizes between 22 and 30 nm. Energy-dispersive X-ray pattern analysis revealed the presence of only copper and oxide ions. By preventing viral cytopathic effects in the Madin-Darby bovine kidney cell line, the methanolic extract of Lablab purpureus and LP-CuO NPs demonstrated a remarkable dose-dependent anti-BoHV-1 action in vitro. Furthermore, molecular docking and molecular dynamics simulation studies of bio-actives from Lablab purpureus against the BoHV-1 viral envelope glycoprotein disclosed effective interactions between all phytochemicals and the protein, although kievitone was found to have the highest binding affinity, with the greatest number of interactions, which was also validated with molecular dynamics simulation studies. Understanding the chemical reactivity qualities of the four ligands was taken into consideration facilitated by the global and local descriptors, which aimed to predict the chemical reactivity descriptors of the studied molecules through the conceptual DFT methodology, which, along with ADMET finding, support the in vitro and in silico results.

12.
Molecules ; 28(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446851

ABSTRACT

In the tropics, coffee has been one of the most extensively cultivated economic crops, especially Arabica coffee (Coffea arabica L.). The coffee pulp, which includes phytochemicals with a proven antifungal action, is one of the most insufficiently utilized and neglected byproducts of coffee refining. In the current experiment, we carried out in silico screening of the isolated Arabica coffee phytochemicals for antifungal activity against Aspergillus fumigatus: a foodborne fungus of great public health importance. As determined by the molecular docking interactions of the library compounds indicated, the best interactions were found to occur between the nucleoside-diphosphate kinase protein 6XP7 and the test molecules Naringin (-6.771 kcal/mol), followed by Epigallocatechin gallate (-5.687 kcal/mol). Therefore, Naringin was opted for further validation with molecular dynamic simulations. The ligand-protein complex RMSD indicated a fairly stable Naringin-NDK ligand-protein complex throughout the simulation period (2-16 Å). In ADME and gastrointestinal absorbability testing, Naringin was observed to be orally bioavailable, with very low intestinal absorption and a bioavailability score of 0.17. This was further supported by the boiled egg analysis data, which clearly indicated that the GI absorption of the Naringin molecule was obscure. We found that naringin could be harmful only when swallowed at a median lethal dose between 2000 and 5000 mg/kg. In accordance with these findings, the toxicity prediction reports suggested that Naringin, found especially in citrus fruits and tomatoes, is safe for human consumption after further investigation. Overall, Naringin may be an ideal candidate for developing anti-A. fumigatus treatments and food packaging materials. Thus, this study addresses the simultaneous problems of discarded coffee waste management and antifungal resistance to available medications.


Subject(s)
Aspergillus fumigatus , Coffea , Humans , Antifungal Agents , Ligands , Molecular Docking Simulation , Coffea/chemistry
13.
Plants (Basel) ; 12(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37447107

ABSTRACT

Datura metel L. (thorn apple) has been used in Thai folk wisdom for wound care. In this study, we chose supercritical carbon dioxide extraction (scCO2) to develop crude extraction from the leaves of the thorn apple. The phytochemical profiles were observed using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). The biological activities of D. metel were performed through antioxidant assays, anti-inflammation based on the Griess reaction, the migration assay, the expression of matrix metalloproteinase-2 (MMP-2), and regulatory genes in fibroblasts. Dm1 and Dm2 extracts were obtained from scCO2 procedures at different pressures of 300 and 500 bar, respectively. Bioactive compounds, including farnesyl acetone, schisanhenol B, and loliolide, were identified in both extracts. The antioxidant properties of both D. metel extracts were comparable to those of l-ascorbic acid in hydrogen peroxide-induced fibroblasts with no significant difference. Additionally, Dm1 and Dm2 significantly inhibited the nitrite production levels of 1.23 ± 0.19 and 1.52 ± 0.05 µM, respectively, against the lipopolysaccharide-treated group (3.82 ± 0.39 µM). Interestingly, Dm1 obviously demonstrated the percentage of wound closure with 58.46 ± 7.61 and 82.62 ± 6.66% after 36 and 48 h of treatment, which were comparable to the commercial deproteinized dialysate from the calf blood extract. Moreover, both extracts were comparable to l-ascorbic acid treatment in their ability to suppress the expression of MMP-2: an enzyme that breaks down collagen. The gene expressions of SHH, SMO, and GLI1 that control the sonic hedgehog pathway were also clearly upregulated by Dm1. Consequently, the scCO2 technique could be applied in D. metel extraction and contribute to potentially effective wound closure.

14.
Plants (Basel) ; 12(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37299190

ABSTRACT

This research aimed to optimize pressure (10-20 MPa) and temperature (45-60 °C) conditions for supercritical fluid extraction (SFE) of Makwaen pepper (Zanthoxylum myriacanthum) extract (ME) in comparison to conventional hydro-distillation extraction. Various quality parameters, including yield, total phenolic compounds, antioxidants, and antimicrobial activities of the extracts, were assessed and optimized using a central composite design. The optimal SFE conditions were found to be 20 MPa at 60 °C, which resulted in the highest yield (19%) and a total phenolic compound content of 31.54 mg GAE/mL extract. IC50 values for DPPH and ABTS assays were determined to be 26.06 and 19.90 µg/mL extract, respectively. Overall, the ME obtained through SFE exhibited significantly better physicochemical and antioxidant properties compared to ME obtained through hydro-distillation extraction. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that beta-pinene was the major component in the ME obtained through SFE (23.10%), followed by d-limonene, alpha-pinene, and terpinen-4-ol at concentrations of 16.08, 7.47, and 6.34%, respectively. On the other hand, the hydro-distillation-extracted ME showed stronger antimicrobial properties than the SFE-extracted ME. These findings suggest that both SFE and hydro-distillation have the potential for extracting Makwaen pepper, depending on the intended purpose of use.

15.
Plant Signal Behav ; 18(1): 2227440, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37366146

ABSTRACT

Microbial volatile organic compounds (MVOCs) are a diverse group of volatile organic compounds that microorganisms may produce and release into the environment. These compounds have both positive and negative effects on plants, as they have been shown to be effective at mitigating stresses and functioning as immune stimulants. Furthermore, MVOCs modulate plant growth and systemic plant resistance, while also serving as attractants or repellents for insects and other stressors that pose threats to plants. Considering the economic value of strawberries as one of the most popular and consumed fruits worldwide, harnessing the benefits of MVOCs becomes particularly significant. MVOCs offer cost-effective and efficient solutions for disease control and pest management in horticultural production, as they can be utilized at low concentrations. This paper provides a comprehensive review of the current knowledge on microorganisms that contribute to the production of beneficial volatile organic compounds for enhancing disease resistance in fruit products, with a specific emphasis on broad horticultural production. The review also identifies research gaps and highlights the functions of MVOCs in horticulture, along with the different types of MVOCs that impact plant disease resistance in strawberry production. By offering a novel perspective on the application and utilization of volatile organic compounds in sustainable horticulture, this review presents an innovative approach to maximizing the efficiency of horticultural production through the use of natural products.


Subject(s)
Volatile Organic Compounds , Disease Resistance , Plant Development , Horticulture
16.
Plants (Basel) ; 12(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36840317

ABSTRACT

Oryza sativa L. cv. Pieisu 1 CMU (PES1CMU) has a high anthocyanin content in the colored bran and high phenolic content in the husk. Biologically active compounds in plants are available as dietary supplements and cosmetics. To expand the utilization of natural resources, PES1CMU will be a natural remedy for skin hyperpigmentation and aging. Cell-free tyrosinase inhibition and scavenging assays were used to screen all extracts, including PES1CMU-rice bran oil (RBO), PES1CMU-defatted rice bran (DFRB), and PES1CMU-husk (H). PES1CMU extracts were first examined in IBMX-stimulated B16 cells and H2O2-induced fibroblasts. The results exhibited that PES1CMU-DFRB was the most effective inhibitor of mushroom tyrosinase, intracellular melanin production (fold change of 1.11 ± 0.01), and tyrosinase activity (fold change of 1.22 ± 0.10) in IBMX-stimulated B16 cells. Particularly, PES1CMU-DFRB showed a comparable whitening effect to the standard arbutin with no significant difference (p > 0.05). Moreover, PES1CMU-DFRB and PES1CMU-H demonstrated strong scavenging activities. After accelerated cell aging caused by H2O2 exposure in fibroblasts, the levels of malondialdehyde production in all PES1CMU-treated fibroblasts were comparable with those of standard l-ascorbic acid (p > 0.05). Besides, PES1CMU-DFRB and PES1CMU-H treatment significantly inhibited collagen degradation against MMP-2 compared to l-ascorbic acid-treated cells (p > 0.05). PES1CMU rice-processing wastes (DFRB and H) could become potential natural sources for dermatocosmetic constituents in skin anti-aging and whitening products.

17.
Plants (Basel) ; 12(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771737

ABSTRACT

Alopecia and gray hair are common hair abnormalities affecting physical appearance and causing psychological problems. Chemical treatments partially restore hair disorders but have distressing side effects. Bioactive plant compounds constitute promising sources of potential medicinal substances instead of chemical agents, producing high side effects. In this study, we focused on the waste of local rice cultivars: Bue Bang 3 CMU (BB3CMU) and Bue Bang 4 CMU (BB4CMU) from the north of Thailand. The rice bran oil (RBO), defatted rice bran extract (DFRB), and rice husk (H) were determined for in vitro hair revitalization in melanin production, nitric oxide (NO) secretion, and steroid 5α-reductase inhibition. The results indicated that BB4CMU-RBO with high contents of iron, zinc, and free fatty acids showed a comparable induction of melanin production on melanocytes (130.18 ± 9.13% of control) to the standard drug theophylline with no significant difference (p > 0.05). This promising melanin induction could be related to activating the NO secretion pathway, with the NO secretion level at 1.43 ± 0.05 µM. In addition, BB4CMU-RBO illustrated a significant inhibitory effect on both steroid 5α-reductase genes (SRD5A) type 1 and type 2, which relates to its primary source of tocopherols. Hence, rice bran oil from the Thai rice variety BB4CMU could be applied as a promising hair revitalizing candidate, from natural resources, to help promote hair growth and re-pigmentation effects.

19.
Carbohydr Polym ; 301(Pt B): 120328, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36446505

ABSTRACT

An antimicrobial thermoplastic starch (TPS) was developed by melt-mixing TPS with chlorhexidine gluconate (CHG) and epoxy resin (Er). The tensile strength and hardness of the TPSCh blend increased with the addition of Er (TPSCh/Er), especially at 5 wt% Er (TPSCh/Er5) (19.5 MPa and 95 %, respectively). The water contact angle of TPSCh/Er was higher than those of TPS and TPSCh because of the improved interfacial tension. Fourier transform infrared and nuclear magnetic resonance analyses confirmed the reaction between the epoxy groups of Er, hydroxyl groups of starch, and amino groups of CHG. TPSCh/Er5 exhibited a significantly lower CHG release than TPSCh owing to the rearrangement of TPSCh chains via Er crosslinking. TPSCh/Er0.5 and TPSCh/Er1 showed inhibition zones against both tested bacteria (Staphylococcus aureus and Bacillus cereus), whereas TPSCh/Er2.5, TPSCh/Er5, and TPSCh/Er10 showed inhibition zones only against S. aureus. Moreover, TPSCh and TPSCh/Er0.5-2.5 exhibited inhibition zones with Saccharomyces cerevisiae.


Subject(s)
Anti-Infective Agents , Epoxy Resins , Starch , Staphylococcus aureus , Anti-Bacterial Agents
20.
Plants (Basel) ; 11(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36559609

ABSTRACT

Gymnema inodorum (Lour.) Decne is a vegetable local to Chiang Mai Province of Northern Thailand. This study aimed to analyze the antioxidant and phytochemical potential of G. inodorum found in Chiang Mai Province; antioxidant compounds of G. inodorum were tested via DPPH, ABTS and FRAP assays, and total phenolic compound and total flavonoid contents were analyzed. Anti-inflammatory effects were focused on regarding pharmacological potential. The gymnemic acid level was analyzed by HPLC-UV, and other potential chemicals were analyzed by LC-QTOF/MS. The quantifications of gymnemic acid contents analyzed using HPLC-UV showed that the highest gymnemic acid concentrations were found in the air-dried and roasted 1-day-fermented leaf extracts (0.1258 ± 0.0157 µg/mg). The highest free radical scavenging activity via DPPH assay was found in baked leaf extract, with an IC50 of 8.99 mg/mL, and via ABTS assay in baked and roasted leaf extracts, with an IC50 of 1.05 mg/mL. FRAP assays showed the highest free radical scavenging activity for the baked leaf extract, with 0.0085 ± 0.008 mM Fe2+/g sample. The total phenolic contents of fresh G. inodorum leaf extracts obtained with ethanol, methanol and water were 0.19 ± 0.0004, 0.21 ± 0.0010 and 0.10 ± 0.0008 µg GAE/g, respectively. The total flavonoid contents of fresh G. inodorum leaf extracts obtained with ethanol, methanol and water were 74.56 ± 28.00, 71.88 ± 16.11 and 10.74 ± 3.63 µg QE/g, respectively. The LC-QTOF/MS analysis of the fresh G. inodorum leaf extract showed that 6-hydroxykaempferol 7-rutinoside was the most abundant compound. In the study, G. inodorum, a plant local to Northern Thailand, is shown to be a useful plant with high antioxidant and phytochemical potential properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...